Constants & Variables

via Jacques Bertin

The Semiology of Graphics: Diagrams, Networks, Maps Jacques Bertin (1967)

The Semiology of Graphics: Diagrams, Networks, Maps Jacques Bertin (1967)

Bertin's 'Retinal Variables'

Retinal Variable: Size

Parameters

height area count

Retinal Variable: Shape

Parameters outline associated information in legend

Retinal Variable: Value

Parameters greyscale lightness

Retinal Variable: Color

Parameters equiluminant hue differences

Retinal Variable: Orientation

Parameters *variation from horizontal ↔ vertical*

Retinal Variable: Texture

Parameters stroke weight

spatial frequency

Parameters

origin x, y, and 'z' axes

Points

"A point represents a location on the plane that has no theoretical length or area. This signification is independent of the size and character of the mark which renders it visible."

Can represent: a position in 2D space an entity with a pair of abstract values

Can vary in: thickness color & value texture

Lines

"A line signifies a phenomenon on the plane which has measurable length but no area. This signification is independent of the width and characteristics of the mark which renders it visible."

Can represent: a connection a boundary

Can vary in: thickness color & value texture

Must keep constant: positions of endpoints

Areas

"An area signifies something on the plane that has measurable size. This signification applies to the entire area covered by the visible mark."

Can represent:

a quantity of variation in each dimension a categorical grouping of points

Can vary in: position

Must keep constant: size shape orientation

Areas

"An area signifies something on the plane that has measurable size. This signification applies to the entire area covered by the visible mark."

Can represent:

a quantity of variation in each dimension a categorical grouping of points

Can vary in: position

Must keep constant: size shape orientation

Variables on the plane

Retinal Variable: Size

Retinal Variable: Shape

Retinal Variable: Value

Retinal Variable: Color

Retinal Variable: Orientation

Retinal Variable: Texture

To recap...

	Points	Lines	Areas	Best to show
Shape		possible, but too weird to show	cartogram	qualitative differences
Size	•.•		cartogram	quantitative differences
Color Hue	•••	5		qualitative differences
Color Value				quantitative differences
Color Intensity	•••	5		qualitative differences
Texture	**************************************			qualitative & quantitative differences

Visual Variables Chart, Making Maps: A Visual Guide to Map Design for GIS John Krygier + Denis Wood (2005)

Case Study

Traffic accidents in 20th Century Paris

The Dataset: 2 dimensions

	- To destribute	Biovolog	Motorcycles	Four-wheels
VEHICLE (or pedestrian)	Pedestrians	Bicycles	Motorcycles	Four-wheele vehicles

The Dataset: 3 dimensions

The Dataset: 4 dimensions

VEHICLE		Pedestrians		Bicycles		Motorcycles		Four-wheeled vehicles	
SEX	0	M	F	м	F	M	F	м	F
CONSEQUENCES (dead, injured)	ရမ္	1232	5%	701	126	2 664	322	1817	694
QUANTITIES		15 470	11 679	12 308	4112	58 94s	12 956	37 915	22 645

The Dataset: 5 dimensions

VEHICLE		_	Pede	estrians	Bicy	cles	Motor	cycles	Four-w	heeled cles
SEX		as	M	F	M	F	M	F	M	F
CONSEQUENCES	_TA	9	704	378	396	56	742	78	5/3	253
AGE	o ž	i	5 206	5 449	3863	1030	8597	1387	7423	5552
QUANTITIES	900	à	223	49	146	24	889	98	720	199
	30	i	3 178	1814	3 024	1118	18 909	3664	15 086	7712
		d	78	24	55	10	660	82	353	107
	20	1	1521	864	1565	609	18 558	4010	9 084	436
•		d	70	28	76	31	362	54	150	61
	10	i	1827	1495	3 407	7218	12 311	3 587	3 543	2593
Source: Ministère		d	150	89	26	5	6	6	70	65
des navaux Publics		i	3341	1967	378	126	181	131	1593	1362

.

2

Linear Construction

Total quantity depicted through line-length (1 planar dimension)

Figures

- 1: unsorted
- 2: sorted horizontally
- 3: overlapped to show proportion
- 4: countable representation
- 5: sorted vertically

Orthogonal Construction

Total not depicted but comparisons enabled (2 planar dimensions)

Figures

6 & 7: quantities on vertical axis9: categories on vertical axis8: hollow bars reinforce '100%' measure10: show 'trends' by linking categories

Rectilinear Elevation

Total not depicted and comparisons impeded (1 planar dimension, 1 area dimension)

Figures

- 11 & 12: areas proportional to horizontal scale13: diagonal arrangement (shudder)
- 14 & 15: regions overlaid to show proportion

Circular Construction

Total depicted in arc angle (1 polar dimension)

Figures

18: simple bar graph but on a curve16, 17, & 19: slices of entire circle or a subset

Polar Construction

Total not depicted. Quantities shown through line-length and category through angle. (1 planar dimension, 1 polar dimension)

Figures

20: simple bar graph with differing bar orientations

23: outer circle to aid comparison

Circular Elevation

Total not depicted. Individual quantities shown through area and categories through angle. (1 polar dimension, 1 area dimension)

Figures

24: curved form of Rectilinear Elevation plot25: radius of arc (Nightingale Rose)

26: area of circle

27: same as 24 but on a semi-circle

Exercise #1

Mapping Time

Babylonian star chart and calendar from Ashurbanipal, Nineveh, Assyrian cuneiform (circa 720 BCE)

Actions and Events in Interval Temporal Logic, James F. Allen, George Ferguson, 1997

Design for Information – Isabel Meirelles

Design for Information – Isabel Meirelles

Design for Information – Isabel Meirelles

Timelines

Joseph Priestley's A New Chart of History (1769)

Timescale

Line indicators (length)

Joseph Priestley's A New Chart of History (1769)

Charles & Ray Eames, Minds of Modern Mathematics 1964

Over the Decades – NYT

- $back \mid Okay +$

Here is Today

Everyone

Sleeping, eating, working and watching television take up about two-thirds of the average day.

Everyone	Employed	White	Age 15-24	H.S. grads	No children
Men	Unemployed	Black	Age 25-64	Bachelor's	One child
Women	Not in lab	Hispanic	Age 65+	Advanced	Two+ children

How different groups spend their day - NYT

The Life of a Typical American

Life of a Typical American - Wait But Why?

Snapshots

Muybridge, The Horse in Motion

CatalogTree 2005. A325-N325: 10.000 cars passing a bridge The time of passing-by, the speed and the distance between two cars.

The Whale Hunt – Jonathan Harris

Turning over of a Starfish Étienne-Jules Marey, Mouvement (1895)

Year-long life cycle of Popillia japonica Newman L. Hugh Newman, Man and Insects (1965)

"Diagram of the causes of mortality in the army in the East" by Florence Nightingale (Wikipedia)

Motown 191 Number One Hits. Publico Newspaper, 2008, Spain

Last Clock - New Mediology